Handling
Negation in
General
Deductive
Databases: A
Program
Transformation

Method

Handling Negation in General Deductive

Databases: A Program Transformation Method

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman
Georgia State University, Atlanta, GA

December 8, 2010

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in

General
Deductive
Databases: A

Program o |NTRODUCT|ON

Transformation
Method

@ BACKGROUND

Sunderraman

© PROGRAM TRANSFORMATION ALGORITHM
@ STABLE MODEL COMPUTATION

@ EXPERIMENTS

@ CONCLUSION

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Weiling Li,
Ming Fang and

)
Sunderraman

INTRODUCTION

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

@ General deductive databases contain rules with arbitrary
negation (negation-recursion) in their bodies.
move(1,2).
move(2,3).
move(3,2).
move(1,4).
win(X) :- move(X,Y), not win(Y).
@ Two popular semantics
o 3-valued well-founded models
o 2-valued stable models
o We present a program transformation approach to compute
(weak) well-founded model
@ Our transformed program eliminates the complex
" negation-recursion”
o We then use the (weak) well-founded model as a starting point
to compute stable models

Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation

Method
@ A term is either a variable or a constant.
,ta) where p is a predicate

Weiling Li,

@ An atom is of the form p(ty,...
symbol and the t;'s are terms.
@ A literal is either a positive literal A or a negative literal = A,

Ming Fang and
Raj
Sunderraman

BACKGROUND where A is an atom.

Definition
A general deductive database is a finite set of clauses of the form

a(—ll,/z,...,/m.

Handling Negation in General Deductive Databases: A Program Transform:

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Weiling Li,

Ming Fang and
Raj
Sunderraman

BACKGROUND

A term, atom, literal, or clause is called ground if it contains no
variables.

A ground instance of a term, atom, literal, or clause @ is the
term, atom, literal, or clause, respectively, obtained by replacing
each variable in @ by a constant.

P* denotes the set of all ground instances of clauses of general
deductive database P.

The Herbrand Base of database P is the set of all ground atoms.

@ Any subset of the Herbrand Base is termed a Herbrand

interpretation (atoms in the interpretation are assumed to be
true and those outside the interpretation are assumed to be
false).

A Herbrand interpretation is a model of the database if all the
facts and rules evaluate to true in the interpretation.

A model is a minimal model if none of its proper subsets is a
model.

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation

Method o Fitting introduced a semantics for general deductive databases
' (also called the weak well-founded semantics)

@ The Fitting semantics is a three-valued semantics

o Fitting was the first to define a semantics that assigned a unique
least (partial) model to general deductive databases

@ The Fitting semantics is based on partial interpretations

Sunderraman

BACKGROUND

Definition

A partial interpretation is a pair | = (I, /=), where /™ and /I~ are
any subsets of the Herbrand base.

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A

e P Let / be a partial interpretation and P be a general dedcutive database.
Method Then TF(/) is the partial interpretation given by

Tﬁ(l)+ = {a| for some clause a < h,b,...,In, € P*, for each
1<i<m
if I; is positive /; € I and,

Sunderraman

BACKGROUND

if I; is negative I/ € 17}
TFf(I)7 = {a| forevery clause a < I, bh,...,In € P*, there is some
1<i<m
if /; is positive [; € I” and,
if I; is negative I/ € I}

where /I is the complement of the literal ;.

The least fixed point (Ifp) of the above operator is the meaning of P.

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

BACKGROUND

Let P be the following general deductive database:

move(1,2).
move(2,3).
move(3,2).
move(1,4).

win(X) :- move(X,Y), not win(Y).

We start with the empty partial interpretation: (),). Then,

llteration[l+ [Iﬁ ‘
1 move(1,2), move(2,3), | move(1,1), move(1,3), move(2,1),
move(3,2), move(1,4) | move(2,2), move(2,4), move(3,1)
move(3,3), move(3,4), move(4,1)
move(4,2), move(4,3), move(4,4)
2 win(4)
3 win(1)

Note that in the Fitting model the atom win(1) is true and the atom
win(4) is false. No truth value is assigned to the atom win(2) and
win(3).

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in

General
Deductive
Databases: A
Program
Transformation
Method

Sunderraman

BACKGROUND

@ The stable model semantics is a two-valued model for general
deductive databases.

@ In general, there can be more than one stable model for a given
general deductive database.

@ Stable models have applications in database repairs as well as
search problems.

Definition

For any set S of atoms from the Herbrand base of a general deductive
database P, let P° be the program obtained from P* by deleting:

© each rule with a negative literal not B; in body with B; € S, and

@ all negative literals from bodies of remaining rules.

If S is a minimal model of P>, then S is a stable model of P.

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A

Program
Transformation
Method

Sunderraman

BACKGROUND

Consider program P:
p(1,2).
q(x) :- p(x,y), not q(y).

The set of constants (Herbrand Universe) is

{1,2}
The set of ground atoms (Herbrand Base) is
{a(1), q(2), p(1,1), p(1,2), p(2,1), p(2,2)}.

The following is P*, the ground instances of the rules of P:

p(1,2).

q(1) :- p(1,1), not q(1).
q(1) :- p(1,2), not q(2).
q(2) :- p(2,1), not q(1).
q(2) :- p(2,2), not q(2).

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in

Rl Let S1={p(1,2),q(2)}. Then P
Databases: A
. Pr;wgramt. p(l ,2) .
Method q(l) M p(l,l)) He—t—q_(_l_)i‘
q(2) :- p(2,1), net—g{)—
Sunderraman .=

The minimal Herbrand model of this program is {p(1,2)}, which is
different from Sp; thus S7 is not stable.

BACKGROUND

Let S,={p(1,2),q(1)}. In this case, P> is

p(1,2).

q(1) :- p(1,2).

q(2) :- p(2,2).
The minimal Herbrand model of this program is {p(1,2), q(1)},
i.e., S». Hence S, is stable.

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Sunderraman

BACKGROUND

The win-program:
move(1,2).
move(2,3).
move(3,2).
move(1,4).
win(X) :- move(X,Y), not win(Y).

has 2 stable models:

S; = { move(1,2),move(2,3) ,move(3,2) ,move(1,4),
win(1),win(2) }

S; = { move(1,2),move(2,3) ,move(3,2) ,move(1,4),
win(1) ,win(3) }

Note: In the Fitting model, win(2) and win(3) both were declared
to be "unknown”.

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Sunderraman

PROGRAM

TRANSFORMA-

TION
ALGORITHM

@ For each predicate p of P, we introduce two predicates pplus
and pminus in the transformed general deductive database
tr(P).

@ Transformation proceeds in 4 steps.

%% Extensional Database

t0(1).

g(1,2,3).

g(2,5,4).

g(2,4,5).

g(5,3,6).

%% Intensional Database

t(Z) :- t0(Z). %% rule 1

t(Z) - g(X,Y,2), t(X). %% rule 2
t(Z) :- g(X,Y,Z), not t(Y). %% rule 3

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Weiling Li,
Komal Khabya,
Ming Fang and

Raj

Sunderraman

PROGRAM

TRANSFORMA-

TION
ALGORITHM

dom(a) .

dom(1) .
dom(2) .
dom(3) .
dom(4) .
dom(5) .
dom(6) .

Step 1: Domain Predicate: Introduce a unique unary predicate
dom. For each constant symbol, a, present in P, output the fact:

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in

General
Deductive
Databases: A
Program
Transformation
Method

Sunderraman

PROGRAM

TRANSFORMA-

TION
ALGORITHM

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

Step 2: Extensional Database:

For each fact p(al,...,an) in the extensional database, output the
fact:

pplus(al,...,an).

For each predicate p with arity k in the extensional database, output
the rule:

pminus(X1,...,Xk) :- dom(X1),...,dom(Xk), not
pplus(X1,...,Xk).

Example

tOplus(1).

tOminus(X) :- dom(X), not tOplus(X).

gplus(1,2,3).

gplus(2,5,4).

gplus(2,4,5).

gplus(5,3,6) .

gminus (X,Y,Z) :- dom(X),dom(Y),dom(Z), not
gplus(X,Y,Z).

Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Sunderraman

PROGRAM
TRANSFORMA-
TION
ALGORITHM

Step 3: Intensional Database:
Consider a rule of the form:

pWi,...,Wl) :- q1(X1),..., gn(Xn), not
r1(Y1),..., not rm(¥Ym).

For each such rule, perform Steps 3a and 3b.

Step 3a. Output “plus” rule:

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

Output the following rule for pplus:

pplus(Wi,...,Wl) :- gqlplus(X1),..

.,qonplus(Xn),
riminus (Y1), ...,rmminus(Ym).

tplus(Z) :- tOplus(Z).
tplus(Z) :- gplus(X,Y,Z), tplus(X).
tplus(Z) :- gplus(X,Y,Z), tminus(Y).

Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Weiling Li,
Komal

Sunderraman

PROGRAM

TRANSFORMA-

TION
ALGORITHM

Step 3b. Output temporary “minus” rules (j: rule number in P)

Step 3b-1:

For each positive subgoal in rule, qi(Xi), output:

temp_p-j(V1,...,Vk) :- dom(U1),..., dom(Ua),
giminus (Xi) .

Step 3b-2:

For each negative subgoal in rule, not ri(Yi), output:

tempp_j(V1i,...,Vk) :- dom(U1),..., dom(Ua),
riplus(Yi).

Note: V1,...,Vk are variables in body and U1,...Ua are variables
present in the body that are not present in the subgoal.
Step 3b-3:
Output the following two rules:
temp._p_j-2(W1,...,Wl) :- dom(V1),..., dom(Vk),
not tempp_j(Vi,...,Vk).
pminus_j(W1l,...,Wl) :- dom(W1),..., dom(Wl), not
temp p_j-2(Wi,...,Wl).

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program

%% rule 1: t(Z)

:- t0(2).

Transformation

Method temp_t_1(Z)
g Li temp_t_1.2(Z)
tminus_1(Z)

Sunderraman

%%h rule 2: t(Z)

:- tOminus(Z).
:= dom(Z), not temp_t_1(Z).
:— dom(Z), not temp-t_1.2(Z).

- g(X,Y,2), t(X).

temp_t_2(X,Y,Z)
temp_t_2(X,Y,Z)
iﬁgﬁzﬁyRMA, temp.t-2.2(2)
TION temp_t_2(X,Y,Z).
ALGORITHM
tminus_2(Z)

%% rule 3: t(Z)

:— gminus(X,Y,Z).
:— dom(Y), dom(Z), tminus(X).
:— dom(X), dom(Y), dom(Z), not

:— dom(Z), not temp_t_2.2(Z).

:- g(X,Y,2), not t(Y).

temp_t_3(X,Y,Z)
temp_t_3(X,Y,Z)
temp_t_3.2(Z)

temp_t_3(X,Y,Z).
tminus_3(Z)

:— gminus(X,Y,Z).
:— dom(X), dom(Z), tplus(Y).
:— dom(X), dom(Y), dom(Z), not

:— dom(Z), not temp_t_3.2(Z).

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Wei
Komal
Ming Fa

Sunderraman

PROGRAM
TRANSFORMA-
TION
ALGORITHM

Step 4. Output “minus” rules:
For each IDB predicate p defined in rules numbered i1,...,in,
output the following rule:
pminus(Wi,...,Wl) :- dom(W1),.
pminus_i1(Wi,...,Wl),...,
prinus_in(Wi,...,Wl).

..,dom(W1),

:— dom(Z), tminus_1(Z), tminus_2(Z),

tminus (Z)
tminus_3(Z) .

ng Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Sunderraman

PROGRAM
TRANSFORMA-
TION
ALGORITHM

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

@ A bottom-up evaluation of the output program produces:
{ tplus(1), tplus(3), tminus(2) }

@ We introduce unknown values via rules of the form:

punknown (X1,...,Xk) :- dom(X1),...,
dom(Xk), not pplus(X1,...,Xk), not
prninus(X1,...,Xk).

for each IDB predicate.

For the example, the following "unknown” rule is generated:

tunknown(Z) :- dom(Z), not tplus(Z), not
tminus (Z) .

A bottom-up evaluation of the output program produces:

{ tunknown(4), tunknown(5), tunknown(6) }

Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Let P be a general deductive database and let tr(P) be the output of
the transformation algorithm. Then,

Sunderraman

o tr(P) has a complete well-founded model.

e p(al,...,an) belongs to the positive component of the Fitting
PROGRAM model of P if and only if pplus(al, ..., an) belongs to the

Tion well-founded model of tr(P).

ALGORITHM

e p(al,...,an) belongs to the negative component of the Fitting
model of P if and only if pminus(al, ..., an) belongs to the
well-founded model of tr(P).

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling

Negation in
General
Deductive Generate
Databases: A &
Program Candidate -+
Transformation
Method Model
DE(ED Data Structure N——
Model 3
Sunderraman —_—
Ground
Program
e
Ground()
Y r
STABLE
MODEL Stable Rodel

COMPUTATION Tester

Yes No

DB: Database E: EDB 1. IDB

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

DR(ET

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

DB:Datahase E:EDB I IDB
P:Positive Values U: Unknown Values

Weiling Li,
Komal Khabya,
Ming F

Paraconsistert
zelation Operstors

Fixpoint Operator
(Tz™)

STABLE
MODEL
COMPUTATION

Yes Mo
Handling Negation in General Deductive Databases: A Program Transform:

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman

Handling
Negation in
General
Deductive

Databases: A e Database with varying EDBs:

Program
Transformation

Method %hgenerate EDB facts of tO
3 %hgenerate EDB facts of g
t(Z) :- t0(2).

ShiissEman t(2) - gX,Y,2), t(X).
t(Z) :- g(X,Y,Z), not t(Y).

@ Facts in the EDB are randomly generated from constant values.
@ We vary the following parameters:

e number of constants (#constants).

o size of EDB (#facts = number of t0_facts + number of g facts).

EXPERIMENTS @ The above two parameters can be used as measures of " problem
size” in graph problems; e.g. constants = nodes, facts = edges;
node(1), node(2),... edge(1,2), edge(1,3),...

Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Wei
Komal Khabya,

Ming Fa nd
@ Intelligent Grounding: technique used to reduce size of ground

Sunderraman

program
@ 2 versions of our approach:
e V1.0 - without intelligent grounding
o V1.1 - with intelligent grounding

EXPERIMENTS

Handling Negation in General Deductive Databases: A Program Transform:

ng Li, Komal Khabya, Ming Fang and Raj Sunderraman

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Wi i,
Komal Khabya,
Ming Fang and

R;

EXPERIMENTS

Vary the number of constants present in the program
(with fixed size of EDB).

1200000
—e— haive approach
1000000 —a—/1.0 approach 4
—a— 1.1 optimiz ation /

800000

EOOO00 /

400000 /

200000 "/'/\./
e S

of congants

Time (ms)

Figure: Vary number of constants

ing Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negation in General Deductive Databases: A Program Transform:

Handling

Negation in Vary the size of EDB (with fixed number of constants).
Deductive
Databases: A
Program
Transformation 160000
Method o
Weiling Li, a0 W
Komal Khabya,
Ming Fang and 120000 .
R —e— naive approach
Sunderraman _ 100000 s 10 appmach
2 —a—%1.1 optimization
s 80000
iE
60000 .\ e
40000 =
20000 Wb_——‘
] T T T T T
EXPERIMENTS 10 12 14 16 18 0
of facts
Figure: Vary number of facts
Weiling Li, Komal Khabya, Ming Fang and Raj Sunderraman Handling Negatil

in General Deductive Databases: A Program Transform:

Handling
Negation in
General
Deductive
Databases: A
Program
Transformation
Method

Wei
Komal

Ming Fa

Sunderraman

CONCLUSION

@ Program transformation method introduced to compute

well-founded model

@ Transformed program has many desirable properties including
the amenability to traditional bottom-up computation.

o Future Work:

o Compare with "alternating fixed point” and other approaches to

compute stable models.

o Program transformation to detect " positive loops” to compute

well-founded model

o Applications - graph problems

ng Li, Komal Khabya, Ming Fang and Raj Sunderraman

Handling Negation in General Deductive Databases: A Program Transform:

	INTRODUCTION
	BACKGROUND
	PROGRAM TRANSFORMATION ALGORITHM
	STABLE MODEL COMPUTATION
	EXPERIMENTS
	CONCLUSION

